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We propose to use precise estimators of mutual information(MI ) to find the least dependent components in
a linearly mixed signal. On the one hand, this seems to lead to better blind source separation than with any
other presently available algorithm. On the other hand, it has the advantage, compared to other implementa-
tions of “independent” component analysis(ICA), some of which are based on crude approximations for MI,
that the numerical values of the MI can be used for(i) estimating residual dependencies between the output
components;(ii ) estimating the reliability of the output by comparing the pairwise MIs with those of remixed
components; and(iii ) clustering the output according to the residual interdependencies. For the MI estimator,
we use a recently proposedk-nearest-neighbor-based algorithm. For time sequences, we combine this with
delay embedding, in order to take into account nontrivial time correlations. After several tests with artificial
data, we apply the resulting MILCA(mutual-information-based least dependent component analysis) algorithm
to a real-world dataset, the ECG of a pregnant woman.
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I. INTRODUCTION

“Independent” component analysis(ICA) is a statistical
method for transforming an observed multicomponent data
setxstd=(x1std ,x2std , . . . ,xnstd) into components that are sta-
tistically as independent from each other as possible[1]. In
theoretical analyses, one usually assumes a certain model for
the data for which a decomposition into completely indepen-
dent components is possible, but in real life applications the
latter will in general not be true. Depending on the assumed
structure of the data, one typically makes a parametrized
guess about how they can be decomposed(linearly or not,
using only equal times or using also delayed superpositions,
etc.) and then fixes the parameters by minimizing some simi-
larity measure between the output components.

Using mutual information(MI ) would be the most natural
way to solve this problem. But estimating MI from statistical
samples is not easy. Most existing algorithms are either very
slow or very crude. Also, the more sophisticated estimates
usually do not depend smoothly on transformations of the
data, which slows down minimum searches. In the ICA lit-
erature, mostly very crude approximations of MI are used, or
MI is completely disregarded in favor of different ap-
proaches[1,2]. In particular, we are aware of only very few
attempts to pay attention to the actual values of the
similarities/(in)dependences obtained by ICA. Of course, it
has been recognized several times that even the best decom-
position with a given class of algorithms(e.g., linear and
instantaneous) may not lead to strictly independent compo-
nents, but then typically it is proposed to use a decomposi-
tion algorithm within this class which is different from that
for truly independent sources[3,4]. An exception is the
“multidimensional ICA” of [5], where the author points out
that one can use standard decomposition algorithms even in
the case of nonzero dependencies, but also there most of the
attention is focused on whether components are independent,
but not on how dependent they are. The latter can be useful
for clustering the output, but also for reliability and stability

testing: A blind source separation into independent compo-
nents will be more robust the deeper the minima of the de-
pendences are. In[6–8], such reliability tests have been pro-
posed based on resampling and noise injection. We believe
that looking at the dependence landscape is more direct and
conceptually simpler.

In the present paper, we propose to use a recently intro-
duced MI estimator based onk-nearest-neighbor statistics
[9]. It resembles the Vasicek estimator[10] for differential
entropies which has been applied recently to ICA[11,12] and
which is also based onk-nearest-neighbor statistics. But
while the Vasicek estimator exists only for one-dimensional
distributions and cannot therefore be used to estimate depen-
dencies via MI, our estimator is based on the Kozachenko-
Leonenko[13] estimator for differential entropies and works
in any dimension. In addition, it seems to give the most
precise blind source separation algorithm for 2D distribu-
tions known at present.

Throughout the paper, we will only discuss the simplest
case of linear superpositions. While MI can be applied in
principle also to nonlinear mixtures, this would be much
more difficult.

The paper is organized as follows. In Sec. II, we recall
basic properties of MI and present the MI estimator of[9].
The basic version of MILCA is described in Sec. III, where
we also give first applications to toy models, and where we
will also discuss the reliability of the decompositions. In Sec.
IV, we deal with the case where only some groups of output
components are independent, with nonzero interdependen-
cies within the groups. In this case it is natural to cluster the
components. We propose to use again MI for that purpose, in
the form of themutual information based clustering(MIC)
algorithm presented recently in[14]. In Sec. V, we discuss
how MILCA (and other ICA algorithms) can be combined
with time delay embedding, in order to take into account
nontrivial time structure(in case the data to be decomposed
form a time series). A thorough discussion of our method and
of its relations to previous work is given in Sec. VI. Conclu-
sions are drawn in the last section, Sec. VII.
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II. MUTUAL INFORMATION

A. General properties of MI

Assume thatX and Y are continuous random variables
with joint density msx,yd and marginal densitiesmxsxd
=edymsx,yd andmysyd. Then MI is defined as[15]

IsX,Yd =E E dxdymsx,ydlog
msx,yd

mxsxdmysyd
. s1d

The base of the logarithm determines the units in which
information is measured. In the following, we will always
use natural logarithms, i.e., mutual information will be mea-
sured in nats.

In terms of thedifferential entropies

HsXd = −E dxmxsxdlog mxsxd, s2d

HsYd = −E dymysydlog mysyd, s3d

and

HsX,Yd = −E E dxdymsx,ydlog msx,yd s4d

it can be written asIsX,Yd=HsXd+HsYd−HsX,Yd.
The most important property of MI is that it is always

non-negative, and is zero if and only ifX andY are indepen-
dent. Another important feature of MI is its invariance under
homeomorphisms ofX andY. If X8=FsXd andY8=GsYd are
smooth and uniquely invertible maps, then

IsX8,Y8d = IsX,Yd. s5d

Notice that this is not the case for differential entropies. Just
as Gaussian distributions maximize the differential entropy,
giving thereby an upper bound on the entropy in terms of the
variance of the distribution, Gaussians minimize MI[9]. This
gives alower bound on MI in terms of the correlation coef-
ficient

r =
kX . Yl

fkX2lkY2lg1/2, s6d

IsX,Yd ù −
1

2
logs1 − r2d. s7d

This might suggest that MI can be decomposed into a
“linear” part [the right-hand side of Eq.(7)] plus a nonlinear
part. While such a decomposition is of course always pos-
sible, it is in general not useful. For example, it would also
suggest that the minimum of MI under linear transformations
sX8 ,Y8d=AsX,Yd is always reached whenX8 andY8 are lin-
early uncorrelated[in which caser =0 and the right-hand
side of Eq.(7) is zero]. But it is easy to give counterex-
amples for which this is not true(see the Appendix).

This is important for MILCA, since it is standard practice
in ICA to make first a “prewhitening”(principal component
transformation plus rescaling, so that the covariance matrix

is isotropic), and to restrict the actual minimization of the
contrast function to pure rotations[1]. If one is sure that the
sources are really independent, this is justified: For the cor-
rect sources, both MIs and covariances are zero. But it is not
justified if there are no strictly independent sources and we
want to find theleastdependent sources.

For any numberM of random variables, the MI(or “re-
dundancy,” as it is often called) is defined as

IsX1,X2, . . . ,XMd = o
m=1

M

HsXmd − HsX1,X2, . . . ,XMd. s8d

Notice that this is the appropriate definition for ICA or
MILCA, since it is this difference which one wants to mini-
mize. In the literature outside the ICA community, usually a
different construct is called MI[15], but we shall in the
following only use Eq.(8).

The M-dimensional MI shares withIsX,Yd the invariance
under homeomorphisms for eachXm, and the fact that it is
bounded by the value obtained for a Gaussian with the same
covariance matrix[9]. The next important property is the
grouping property[9],

IsX,Y,Zd = I„sX,Yd,Z… + IsX,Yd. s9d

Here,I(sX,Yd ,Z) is the MI between the two variablesZ and
sX,Yd, and we have used the fact that a random variable need
not be a scalar. Indeed, anything we said so far holds also if
X,Y, . . . aremulticomponent random variables[except Eq.
(7), which has to be suitably modified]. Therefore, if we have
more than three random variables, Eq.(9) can be iterated.
For any set of random variables and any hierarchical cluster-
ing of this set into disjoint groups, the total MI can be hier-
archically decomposed into MIs between groups and MIs
within each group. This will become important in Sec. V,
where we discuss clustering based on MI.

Intuitively, one might expect thatIsX,Y,Zd=0 if IsX,Yd
= IsX,Zd= IsY,Zd=0. Pairwise strict independence would
then imply global independence. That this isnot true is dem-
onstrated in the Appendix with a simple counterexample. It
becomes important for chaotic deterministic systems. If
x1,x2, . . . ,xN is a univariate signal produced by a strange
attractor with dimensiond, then anyd-tuple of consecutivext
values will be weakly dependent, while anym-tuple with
m.d will be strongly dependent.

The last property to be discussed here is related to homeo-
morphisms involving a pair of variables sX,Yd, i.e.,
sX8 ,Y8d=FsX,Yd. Using the grouping property and the in-
variance under homeomorphisms of a single variable, we
obtain [9]

IsX8,Y8,Z, . . . d = IsX,Y,Z, . . . d + fIsX8,Y8d − IsX,Ydg.

s10d

This is important if we want to minimize the MI with respect
to linear transformations. Since any such transformation in
M dimensions can be factorized into pairwise transforma-
tions, this means that we only have to compute pairwise MIs
for the minimization. To find the actual value of the mini-
mum, we have of course to perform one calculation in allM
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dimensions. We also have to estimate higher-order MIs di-
rectly, if we want to use the method of Sec. V A with em-
bedding dimensionm.2.

B. MI estimation

Assume that one has a set ofN bivariate measurements,
sxi ,yid, i =1, . . . ,N, which are assumed to be iid(independent
identically distributed) realizations of the random variable
Z=sX,Yd. Our task is to estimate MI, with or without explicit
estimation of the unknown densitiesmsx,yd, mxsxd, and
mysyd.

Two classes of estimators were given in[9]. In contrast to
other estimators based on cumulant expansions, entropy
maximalization, parametrizations of the densities, kernel
density estimators, or binnings(for a review of these meth-
ods, see[9]), the algorithms proposed in[9] are based on
entropy estimates fromk-nearest-neighbor distances. This
implies that they are data-efficient(with k=1 we resolve
structures down to the smallest possible scales), adaptive(the
resolution is higher where data are more numerous), and
have minimal bias. Numerically, they seem to becomeexact
for independent distributions, i.e., the estimators are com-
pletely unbiased(and therefore vanish except for statistical
fluctuations) if msx,yd=msxdmsyd. This was found for all
tested distributions and for all dimensions ofx andy. It is of
course particularly useful for an application where we just
want to test for independence.

In the following, we shall discuss only one of these two
classes, the one based on rectangular neighborhoods called

Î s2dsX,Yd in [9].

C. Formal developments

We will start from the Kozachenko-Leonenko estimate for
Shannon entropy[9,13,16–18],

ĤsXd = − cskd + csNd + log cd +
d

N
o
i=1

N

log esid, s11d

where csxd is the digamma function,esid is twice the dis-
tance fromxi to its kth neighbor,d is the dimension ofx, and
cd is the volume of thed-dimensional unit ball. Mutual in-
formation could be obtained by estimatingHsXd, HsYd, and
HsX,Yd separately and using

IsX,Yd = HsXd + HsYd − HsX,Yd. s12d

But for any fixedk, the distance to thekth neighbor in the
joint space will be larger than the distances to the neighbors
in the marginal spaces. Since the bias from the nonunifor-
mity of the density depends of course on these distances, the

biases inĤsXd, ĤsYd, and inĤsX,Yd would not cancel.
To avoid this, we notice that Eq.(11) holds forany value

of k, and that we do not have to choose a fixedk when
estimating the marginal entropies(this idea was used first,
somewhat less systematically, in[19]). So let us denote by
exsid and eysid the edge lengths of the smallest rectangle
around pointi containingk neighbors, and letnxsid andnysid

[the number of points withixi −xjiøexsid /2 and iyi −yji
øeysid /2] be the new number of neighbors in the marginal
space. The estimate for MI is then

ÎsX,Yd = cskd − 1/k − kcsnxd + csnydl + csNd. s13d

We denote byk¯l averages over both alli P f1, . . . ,Ng and
all realizations of the random samples.

Here we will show results ofÎsX,Yd for Gaussian distri-
butions (cf. Fig. 1). Let X and Y be Gaussian signals with
zero mean and unit variance, and with covariancer. In this
caseIsX,Yd is known exactly,

IGausssX,Yd = −
1

2
logs1 − r2d. s14d

Apart from the fact that indeedÎsX,Yd− IGausssX,Yd→0 for
N→`, the most conspicuous feature is that the systematic
error is compatible with zero forr =0. This is a property
which makes the estimator particularly interesting for ICA
because there we are looking for uncorrelated signals. For
non-Gaussian signals, our estimator still has a smaller sys-
tematic error than other estimators in the literature[9].

Using the same arguments forn random variables
X1,X2, . . . ,Xm, the MI estimate forIsX1,X2, . . . ,Xmd is [9]

ÎsX1,X2, . . . ,Xmd = cskd − sm− 1d/k + sm− 1dcsNd − kcsnx1
d

+ csnx2
d + ¯ csnxm

dl.

D. Practical considerations

By choosing proper values fork, the algorithm allows us
to minimize either the statistical or the systematic errors. The

higherk is, the lower is the statistical error ofÎ. The system-
atic error shows exactly the opposite behavior. Thus, to keep
the balance between these two errors, the best choice fork
would lie in the middle range. But for some cases it makes
sense to deviate from this, e.g., when we want to find most
independent signal sources. There the true values of the MI
are small, and thus also the systematic errors for allk. In this

FIG. 1. Estimates of average values ofIsX,Yd− IexactsX,Yd for
Gaussian signals with unit variance and covariancesr =0.9, 0.6, 0.3,
and 0.0(from top to bottom), plotted against 1/N. In all cases,k
=1. The number of realizations is.23106 for N, =1000, and
decreases to<105 for N=40 000. Error bars are smaller than the
sizes of the symbols.
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case, it is better to use largek in order to reduce statistical
errors. On the other hand, when the data files are very long,
we do not have to worry about statistical errors and we
should choosek small.

Most of the CPU time for estimating MI with our new
estimator is used for neighbor searching. In[9], we presented
three implementations which ranged from very simple but
slow to sophisticated and fast. In the following, we shall
always use the fastest implementation which uses grids to
achieve a CPU time,N log N for N points. We will not use
rank ordering(as also discussed in[9]), but we will add
small Gaussian jiggles(amplitude<10−8) to all measured
values in order to break any degeneracies due to quantization
in the analog-to-digital conversion[9].

III. MILCA WITHOUT USING TEMPORAL STRUCTURES

A. Basic algorithm

In this subsection, we will show how the linear instanta-
neous ICA problem is solved using the new MI estimator. We
will apply this then to several artificial data sets which are
constructed by superimposing known independent sources,
and we will compare the results with those from several
other ICA algorithms.

In the simplest case,xstd is an instantaneous linear super-
position of n independent sources sstd
=(s1std ,s2std , . . . ,snstd),

xstd = Asstd, s15d

whereA is a nonsingularn3n “mixing matrix.” This means
that the number of sources is equal to the number of mea-
sured components. In this case, we know that a decomposi-
tion into independent components is possible, since the in-
verse transformation

ŝstd = Wxstd with W = A−1 s16d

does exactly this. If Eq.(15) does not hold, then no decom-
position into strictly independent components is possible by
a linear transformation like Eq.(16), but one can still search
for the least dependent components.

But even if Eq. (15) does hold, the problem of blind
source separation(BSS), i.e., of finding the matrixW with-
out explicitly knowingA, is not trivial. Basically, it requires
that x be such that the components of any superpositions8
=W8x with W8ÞW are not independent. Since linear com-
binations of Gaussian variables are also Gaussian, BSS is
possible only if the sources are not Gaussian. Otherwise, any
rotation(orthogonal transformation) s8=Rs would again lead
to independent components, and the original sourcess could
not be uniquely recovered. Since any ICA algorithm will find
a more or less meaningful solution, we need a reliability test
for the obtained components. This is given in Sec. III C.

As a first step, the matrixW is usually decomposed into
two factors,W =RV, where theprewhiteningV transforms
the covariance matrix intoC8=VCV T=1, and R is a pure
rotation. Prewhitening is just a principal component analysis
(PCA) together with a rescaling. The ICA problem reduces
then to finding a suitable rotation for the prewhitened data.

The motivation for this is that any reasonable contrast
function used for the ICA will give least dependent compo-
nents which are also uncorrelated. In Sec. II, we have seen
that this is not always the case, but that it is true whenever
the components are reallyindependent. One can take now
several different attitudes. The most radical is to abandon
prewhitening altogether(for different reasons not to use pre-
whitening, see[20]). But this slows down the algorithm con-
siderably. Also, prewhitening can be detrimental only when
there are residual dependencies between the optimal compo-
nents, and it is not clear what is the significance of such
components. In the following, we shall always use prewhit-
ening unless we say explicitly the opposite. We shall always
assume that the prewhitening step has already been done,
and we will restrict the proper ICA(or rather LCA) transfor-
mations to pure rotations. As a third alternative, one could
first use prewhitening, but try at the end to see whether some
nonorthogonal transformations improve the results further.
We have not yet studied this strategy.

The aim of ICA is now to minimizeIsX1¯Xnd under a
pure rotationR. Any rotation can be represented as a product
of rotations which act only in some 232 subspace,R
=pi,jRi jsfd, where

Ri jsfdsx1 ¯ xi ¯ xj ¯ xnd = sx1 ¯ xi8 ¯ xj8 ¯ xnd s17d

with

xi8 = cosfxi + sinfxj, xj8 = − sinfxi + cosfxj . s18d

For such a rotation, one has[see Eq.(10)]

IfRi jsfdXg − IsXd = IsXi8,Xj8d − IsXi,Xjd, s19d

i.e., the change ofIsX1¯Xnd under any rotation can be com-
puted by adding up changes of two-variable MIs. This is an
important numerical simplification.

To find the optimal anglef in a given si , jd plane, we

calculatedÎ i jsfd= ÎsXi8 ,Xj8d for typically 150 different angles
in the intervalf0,p /2g, fitted these values by typically 3–15
Fourier components, and took then the minimum of the fit.

The latter is useful becauseÎsfd is not smooth inf, for
essentially the same reasons as discussed in[12]. We also

tried the augmentation proposed in[12] to smoothÎsX8 ,Y8d.
It worked as well as, by and large, the Fourier filtering, but it
was much slower.

Now the resulting MILCA algorithm can be summarized:
(i) Preprocess(center, filter, detrend,…) and whiten the data.
(ii ) For each pairsi , jd with i , j =1¯n, find the anglef

which minimizes a smooth fit toÎ i jsfd= ÎsXi8 ,Xj8d. (iii ) If

ÎsX18 . . .Xn8d has not yet converged, go back to step(ii ). Oth-
erwise,ŝi =Xi8 are the estimates for the sources.

The order of choosing the sequence of pairs in point(ii ) is
not essential. In our numerical simulations, the convergence
speed did not differ significantly whether we went through
the pairssi , jd systematically or randomly.

B. Numerical examples and performance tests

(a) As a first test, we study the set of 18 problems pro-
posed by Bach and Jordan[21] and studied also in[12]. Each
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problem corresponds to a 1D probability distributionpsxd.
One thousand pairs of random numbersx andy, each drawn
iid from psxdpsyd, are mixed asx8=x cosf+y sinf, y8=
−x sinf+y cosf with random anglef common to all pairs
(i.e., A is a pure rotation). Using MILCA, we obtained then

the estimateÂ. This is repeated 100 times with different
anglesf and with different random sets of pairssx,yd. To

assess the quality of the estimatorÂ (or, equivalently, of the

back-transformationŴ =Â−1), we use the Amari perfor-
mance indexPerr [22],

Perr =
1

2N
o
i,j=1

N S upij u
maxkupiku

+
upij u

maxkupkju
D − 1, s20d

wherepij =sÂ−1Adi j .
Results are given in Table I(column “MILCA” ) and com-

pared there to the results of previous algorithms given in
[12]. They are excellent on average and surpassed only by
the RADICAL algorithm proposed in[12], which also uses
an entropy estimate based on neighbor distances, but for the
differential Shannon entropiesHsx8d andHsy8d. Another fea-
ture used in[12] is data augmentation: To obtain a more
smooth dependence on the anglef, each data vectorsx,yd is
replaced by anR-tuple (with R=30) of nearby points. The

same augmentation trick can be used also for MILCA, and
improves the results for very similar reasons. Indeed, our
results obtained with MILCA and with data augmentation,
given in the last column of Table I, are even better than those
of RADICAL. In the following tests, we did not use data
augmentation, because it is rather time consuming.

(b) As a second test, we study an example taken from[6].
In involves five input sources[a sine wave, two different
speech signals(the first half of “Houston, we have a prob-
lem” and “parental guidance is suggested” from[23]), one
white Gaussian noise, and one uniformly distributed white
noise] (5000 data points each) which are linearly mixed with
a 535 matrixA to form five output signals. In mixing these
components, no time delay is used, i.e., the superpositions
are strictly local in time. For this example, it is possible to
find the inverse transformationW =A−1 up to a permutation
and up to scaling factors, because all sources are independent
of each other and only one has a Gaussian distribution. To
assess the quality of this back-transformation, we again use
the Amari performance index.

The results obtained with 200 different random mixtures
of the sources(with uniformly distributed mixing matrices
and with different realizations of the random channels for
each mixture) are compared in the left panel of Fig. 2 with
three standard algorithms: FastICA[1], JADE [24], and TD-
SEP[25]. We found that FastICA sometimes gets stuck in a

TABLE I. Performance indices(multiplied by 100) for two-component blind source separation, test
problem(A). The results in the first six columns(FastICA, Jade, Imax, KCCA, KGV, and RADICAL) are
taken from Ref.[12], where references to these algorithms are also given and where the probability distri-
bution functions(PDFs) “a”–“r” are defined. The last two columns show the results of MILCA, first in its
simplest version(column 7) and then with data augmentation as proposed in[12] (column 8). Each perfor-
mance index is an average over 100 replicas, each replica consisting of 1000 pairs of numbers drawn

randomly from the PDFs. For MILCA, we usedk=10, and we fittedÎsfd by Fourier sums with three
(MILCA ) and five terms(augmented MILCA), respectively.

PDFs FastICA Jade Imax KCCA KGV RADICAL MILCA MILCA(augmented)

a 4.4 3.7 1.8 3.7 3.0 2.1 2.7 2.4

b 5.8 4.1 3.4 3.7 2.9 2.7 2.9 2.5

c 2.3 1.9 2.0 2.7 2.4 1.2 1.5 1.0

d 6.4 6.1 6.9 7.1 5.7 5.3 7.0 4.3

e 4.9 3.9 3.2 1.7 1.5 0.9 0.9 1.0

f 3.6 2.7 1.0 1.7 1.5 1.0 0.9 0.9

g 1.8 1.4 0.6 1.5 1.4 0.6 0.6 0.6

h 5.1 4.1 3.1 4.6 3.6 3.7 3.4 3.3

i 10.0 6.8 7.8 8.3 6.4 8.3 7.9 8.0

j 6.0 4.5 50.6 1.4 1.3 0.8 0.7 0.8

k 5.8 4.4 4.2 3.2 2.8 2.7 2.4 2.3

l 11.0 8.3 9.4 4.9 3.8 4.2 4.1 3.3

m 3.9 2.8 3.9 6.2 4.7 1.0 1.0 0.8

n 5.3 3.9 32.1 7.1 3.0 1.8 2.0 1.6

o 4.4 3.3 4.1 6.3 4.5 3.4 3.4 2.9

p 3.7 2.9 8.2 3.6 2.8 1.1 1.6 1.2

q 19.0 15.3 43.3 5.2 3.6 2.3 2.9 1.9

r 5.8 4.3 5.9 4.1 3.7 3.2 3.5 2.7

mean 6.1 4.7 10.6 4.3 3.3 2.6 2.7 2.3
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local minimum, and runs differing only in the initial condi-
tions can produce different results. The error bars shown in
Fig. 2 indicate the resulting uncertainty of the performance
measure, estimated from 20 realizations that differ only in
initial conditions. The errors of JADE and FastICA are
mainly due to their difficulty to separate one of the audio
channels from the Gaussian noise. TDSEP is not able to de-
compose the two noise channels, since it is also not designed
for this purpose(it uses time structures to separate signals).
Very good results for all 200 mixtures are obtained by
MILCA, although the audio signals are quite noisy and have
nearly Gaussian distributions. The performance of JADE and
FastICA compared to MILCA becomes better when the qual-
ity of the acoustic signals improves.

In addition to the Amari index, another(more direct) way
to judge the accuracy of the source estimates is to look at the
estimated MIs. If and only if the sources were estimated
correctly, the MI should be zero. In the following, we pro-

pose to use both the matrix of pairwise estimatorsÎsŝi , ŝjd
and the estimated total MIÎsŝ1¯ ŝnd. The important advan-
tage over the Amari index is that they can also be used when
the exact sources are not known. Low values of the MI in-
dicateboth that the data are a mixture of independent com-
ponents,and the separation algorithm worked well in pro-
ducingsomeindependent components. Notice that it cannot
be expected in general that the components found are iden-
tical to the sources, e.g., if some of them are Gaussians. In
Fig. 2 again MILCA shows the best performances.

Notice the very big difference between FastICA/JADE
and TDSEP in the right panel of Fig. 2, which is much bigger
than that measured with the Amari index. The first two have
problems in separating one of the acoustic signals(signal 4
in Fig. 4) from the Gaussian, because it has a nearly Gauss-
ian amplitude distribution, but for the same reason this is not
punished by a large MI between the outputs(improved per-
formance index, see later in Fig. 14). TDSEP, using time
information, has no problem with this, but cannot separate
uniform from Gaussian noise—and is heavily punished for

that by MI. In Sec. V, we will show how to improve MILCA
such that it can better separate components which have
nearly Gaussian amplitude distributions but different time
correlations. Using that improved MILCA will give a much
bigger performance difference with algorithms like FastICA/
JADE.

(c) Next we want to investigate the case where the decom-
position is neither perfectly nor uniquely possible. Such an
example can be constructed by simply adding one cosine
with the same frequency as the sine and one more Gaussian
channel to the last test case. This now violates the assump-
tion of independent sources, because the sine and cosine are
strongly dependent. The theoretical value for the MI would
be infinite, but a numerical estimator from a finite data
sample gives a finite value, in our caseIsS1¯Snd=0.72[26].
But for this example, perfect blind source separation is im-
possible also because the two Gaussians are not uniquely
decomposable. We want to know how an ICA algorithm per-
forms in view of such problems. It should still be able to
separate those components which can be separated.

The total output MI is shown in the upper panel of Fig. 3.
We see that for all algorithms, the MI is higher than the MI
between the input channels, which serves essentially as a
consistency test. The difference is smallest for MILCA. The

FIG. 2. Test problem(B), consisting of five input channels. Left
panel: Averaged performance indexPerr from the output of FastICA
[1] (parameters with lowest MI), JADE [24], TDSEP(same param-
eters as in[25]), and MILCA sk=30d. Right panel: same as left side,

but with total MI Î sk=3d used as a performance measure.

FIG. 3. Test problem(C), with seven input channels. Upper

panel: AveragedÎsŝ1¯ ŝnd sk=3d from the output of FastICA[1]
(parameters with lowest MI), JADE [24], TDSEP(same parameters
as in [25]), and MILCA sk=30d. The horizontal line indicates the
true MI of the input channels. Lower panel: Pairwise MI estimates

Î between all channel combinations, for the MILCA output compo-
nents shown in Fig. 4(diagonal is set to zero).
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MIs between all pairwise channel combinations obtained
with MILCA are shown in the lower panel of Fig. 3. They
show again that MILCA has done a perfect job: All compo-
nents are independent except for those which should not be.
MILCA output is shown directly in Fig. 4. Although we do
not show the input, it is clear that the separation has been as
successful as possible.

(d) There are a number of blind source separation prob-
lems in the field of analytical spectroscopy, where quantita-
tive spectral analysis of chemical mixtures is formulated as
multivariate curve resolution(for recent reviews, see
[27–29] and as an ICA problem[30–32]). Assuming Beer’s
law, the spectrum of a mixture of pure constituents with
spectrasisnd and concentrationsAi is xsnd=oiAisisnd. Given
a set ofN mixtures andN pure components, we can then
write this in vector notation asxsnd=Assnd, analogous to Eq.
(15). The task is to obtain estimatesŝsnd for the pure com-
ponents. This is the instantaneous linear ICA problem, except
that in most applications of interest the spectral sources are
not independent but have overlapping bands. This happens
when chemical compounds in a mixture share several com-
mon or similar structural groups that demonstrate nearly the
same spectral patterns.

This difficulty makes mixture decomposition quite non-
trivial for many BSS techniques used in chemometrics, un-
less interactive band selection(e.g., SIMPLISMA[33], IPCA
[34], BTEM [35]) is employed to avoid using those parts of
the signals where severe overlaps reduce the quality of de-
composition. Such preprocessing made by hand is, of course,
a bit of an art, because these unsafe bands cannot be known
a priori in a blind problem. Since the focus here is rather on
developing general purpose algorithms, we aim at using
MILCA without interactive preprocessing in order to esti-
mate its pure overall efficiency in cases when residual de-
pendencies play a role.

To test the performance of MILCA on typical spectral
data, we collected a pool of 62 experimental molecular in-
frared absorption spectra in the range 550–3830 cm−1 (822
data points each) taken from the NIST database[36]. This
test set was selected to contain organic compounds with
common structural groups(benzene derivatives, phenols, al-
cohols, thiols) so that their spectra have multiple overlapping
bands and, thereby, are mutually dependent. Then a sample
of 7000 triples of three-component mixtures was constructed

by choosing spectra randomly from the pool and applying
random mixing matricesA [37]. For each decomposition, the
Amari performance index was computed. Figure 5 compares
its distributions for several different ICA algorithms includ-
ing FastICA [1], RADICAL [12], and Non-negative PCA
(NNPCA) [38]. The latter uses the fact that pure spectra are
non-negative and the same should hold for the estimates, so
the non-negativity is imposed as a soft constraint on the es-
timatesŝisnd in an optimization procedure. But our simula-
tions showed that this constraint is often not fulfilled, and in
some cases the output of NNPCA(as well as that of other
algorithms) is negative. To a large part, this is due to depen-
dencies between the sources. Already prewhitening(i.e.,
PCA and rescaling) sometimes leads to decorrelated compo-
nents which cannot be made non-negative by any subsequent
rotation. Trying to enforce non-negativity neglecting other
aspects might then be counterproductive, and this might
partly explain the relatively poor performance of NNPCA
(Fig. 5(a)).

NNPCA has to be applied to the original spectra, while it
is well known that using derivatives of spectroscopic signals
with respect to frequency can improve the results(see, e.g.,
[30,32]). Taking such derivatives extracts the spectral infor-
mation which is more independent between the sources[2].
In our numerical experiments, second-order derivatives ap-
proximated by finite differences

Ud2xsnd
dn2 U

ni

, xsni−1d − 2xsnid + xsni+1d s21d

gave the best performance[39]. This is clearly seen in the
example of FastICA[compare distributionssbd and scd in
Fig. 5]. But MILCA sed and RADICAL sdd with second de-
rivative data perform better than FastICAscd, and are almost
equally good when compared to each other. Furthermore, our
numerical results confirmed that non-negativity is satisfied
whenever the decomposition is successful(Amari index be-
low 0.05) (see also the discussion in[40]). But whether this
is fulfilled depends primarily on the dependencies between
the original signals, and less on the algorithm employed.

A more detailed study of the potential of MILCA in mul-
tivariate spectral curve resolution will be given in a forth-
coming publication[41] which will focus on the analysis of
experimental mixtures and, in particular, on the comparison

FIG. 4. Seven output channels of the MILCA algorithm, test
problem(C).

FIG. 5. Performance index distributions over 7000 triples of
three-component mixtures. For histogramssad ,sbd the original
spectra were decomposed, forscd–sed their second derivatives.

LEAST-DEPENDENT-COMPONENT ANALYSIS… PHYSICAL REVIEW E 70, 066123(2004)

066123-7



with recently developed interactive algorithms such as
BTEM [35].

C. Reliability and uniqueness of the ICA output

Obtaining the most independent components from a mix-
ture is only the first part of an ICA analysis. Checking the
actual dependencies between the obtained components
should be the next task, although it is most often ignored. We
have seen that it becomes easy and natural with MILCA,
which was indeed one of our main motivations for MILCA.
The next task after that is to check the reliability, uniqueness,
and robustness of the decomposition. We have already dis-
cussed this in the last subsection for test example(C), but not
very systematic. A systematic discussion will be given now.

Recently proposed reliability tests[6–8] are based on
bootstrap methods or noise injection. We here present an
alternative procedure which again makes use of the fact that
MILCA gives reliable estimates of theactual (in)dependen-
cies: We test how much the estimated dependencies change
under remixing the outputs.

In the simplest case, a multivariate signal withn compo-
nents is an instantaneous linear mixture ofn independent
sources. This was the model we started with in Sec. III A.
We assume it to apply when(i) all estimated pairwise MIs
between all ICA components fall below a defined threshold,

Îsŝi , ŝjd,Dmax for all i , j =1, . . . ,n andi Þ j , and(ii ) the over-

all MI Îsŝ1¯ ŝnd is below another threshold. Notice that the
first criterion alone is not sufficient, see the Appendix.

In real-world data, however, we are usually confronted
with deviations from this simple model. The next simple
possibility is that some pairwise MIs are still exactly zero,
but others are not. Let us draw a graph where each of then
output channels is represented by a vertex, and each pair

si , jd of vertices is connected by an edge ifÎsŝi , ŝjd.Dmax.
This give a partitioning of the set of output components into
connected clustersC1, . . . ,Cm with møn. If, in addition, the

MI between these clusters,ÎsC1, . . . ,Cmd, is below another
suitably chosen threshold, we consider each cluster to be
independent(notice that we do not require all channels
within a cluster to have a MI above the thresholdDmax). This
is essentially our version of multidimensional ICA[5]. It
uses exactly the same basic MILCA algorithm as defined
above, and is thus much simpler conceptually than the “tree-
dependent component analysis” of[3]. Its main drawback is
that it is not sensitive to the actual strengths of the nonzero
interdependencies. A better algorithm which does take them
into account will be discussed in Sec. IV.

In addition to this first step of an ICA output analysis, we
have to test for the uniqueness of the components. For this
purpose, we check whether the(one- or multidimensional)
sources obtained by the ICA algorithm indeed correspond to
distinct minima of the contrast function or whether other
linear combinations exist which show approximately the
same overall dependencies. An example for the latter case is
given by two uncorrelated Gaussian signals. They remain
independent under rotation[42].

A good estimator for the uniqueness of the ICA output is
the variability of the pairwise MI under remixing, i.e., under
rotations in the two-dimensional plane,

si j = IsXi,Xjd − Î i jsfmind for i Þ j , s22d

where the global minimum ofÎ is at f=fmin, and

IsXi,Xjd =
2

p
E

0

p/2

dfÎ i jsfd s23d

[notice thatI ijsfd is periodic in f with period p /2]. For
unique solutions, the MI will change significantly(largesi j),
but it will stay almost constant for ambiguous outputs(small
si j).

Results for the MILCA output of test problem(c) are
shown in Fig. 6(to aid in the interpretation, the actual output
signals were shown in Fig. 4). The basic ICA model is vio-
lated both in the Gaussian noise subspace and the sin/cos
subspace. In the Gaussian subspace, the components are in-
dependent, but it should be impossible to find a unique de-

composition. Indeed,s5,6<0 (Fig. 6) and Î5,6<0 (Fig. 3).
For the dependent components(sin/cos subspace), the situ-
ation is different. We expect to haves=0 also here, corre-
sponding to the isotropy of the distribution in this subspace.

But Î should be much larger than zero, because the two sig-

nals are not independent. Indeed, we sees1,2<0 and Î1,2
@0. In general, it depends on the specific application
whether one should attribute any meaning tosi j when com-
ponentsi and j are not independent. Finally, we conclude
from Fig. 3 (lower) and Fig. 6 that the channels 3, 4(audio
signals), and 7 (uniformly distributed noise) are one-
dimensional sources, because they are independent of any

channel,Î3,i < Î4,i < Î7,i <0, and are reliable,s3,i <s4,i <s7,i
@0.

D. Noisy signals

Because our aim is to apply MILCA to real world data,
we have to discuss the influence of measurement noise. In
the literature, there exist several algorithms which are spe-
cially tailored to this problem(see, e.g., Ref.[1], Chap. 15).
Typically, in order to obtain optimal performance, the noise
is assumed to satisfy very special properties such as being
additive, uncorrelated, isotropic, and Gaussian. Below we
will present a modified MILCA algorithm which assumes

FIG. 6. Square roots of variabilitiessi j of IfRsXi ,Xjdg (with k
=6) from MILCA output for test problem(C) (Fig. 4). Elements on
the diagonal have been set to zero.
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that we have measurement noise with exactly these proper-
ties.

Alternatively, one can take just a standard ICA algorithm
(in our case MILCA as described above), and analyze how
its output depends on the noise level. In the following, we
will compare both approaches.

We start with two uniformly distributed variables and mix
them with a random 232 matrix with a fixed condition num-
ber. After that, iid Gaussian noises are added to each of the
two mixtures. The amplitudes in both channels are the same,

xistd = o
j=1

2

Aijsjstd + histd s24d

with khistdh jst8dl=rdi jdtt8. For the case where we do not use
any information of the measurement noise signals,xistd are

then simply used as input in MILCA. In Fig. 7, we showÎsfd
for the same mixing matrix but different signal-to-noise ra-

tios SNR=varfsistdg / r. We see thatÎ becomes flatter(the
variability with respect to the mixing angle decreases) with
decreasing SNR[43]. The presence of noise leads also to a
shift of the minimum. Both effects introduce errors in esti-
mating the original mixing matrix. The upper curve in Fig. 8

shows the averaged Amari index over 100 realizations with
different noise and mixing matrices.

To reduce this error, we modify MILCA ton-MILCA
(noisy MILCA). At first we do a “quasiwhitening” with the
estimated covariance matrixV =sCx−r1d−1/2 of the pure sig-
nals (see, e.g.,[1], Chap. 15) to decorrelate the original
sources. As a consequence of this, the noise will now be-
come correlated, and with it also the entire “quasiwhitened”

signal. Because of this, we should not minimizeÎsfd, since
in this way we would introduce a bias as seen in Fig. 7

towards wrong values off. Instead, we minimizeÎsfd
+ 1

2 logf1−Cijsfd2g, where we have subtracted the “linear”
contribution[see Eq.(7)]. In Fig. 8, we show again the av-
eraged Amari index for the same realizations as used before.
Making use of detailed information on the noise clearly im-
proved the results, except for very small SNR. The amount
by which it improves depends on the condition number of
the mixing matrix. For matrices far away from singularity
(low condition number), the quasiwhitening has little effect
and there is hardly any difference, while for large condition
numbers the two mixtures are nearly the same and it is im-
possible to obtain good results with either algorithm.

Finally, before leaving this subsection, let us say a few
words about outliers. Outliers are just a special case of noise.
Because our MI estimator is based on thek-nearest-neighbor
distribution, outliers cause fewer difficulties(Ref. [12]) than,
e.g., in kurtosis-based algorithms.

E. A real-world application

Finally, let us apply MILCA to a fetal ECG recording
from the abdomen and thorax of a pregnant woman(eight
electrodes, 500 Hz, 5 s). We chose this data set because it
was analyzed several times with different ICA algorithms
[5,6,9,44] and is available on the web[45].

The output components of MILCA are shown in Fig. 9
[46]. We usedk=30 neighbors for estimating MI, and to

obtain the minima ofÎ i jsfd we fitted with three Fourier com-
ponents. The success of the decomposition is already seen by
visual inspection. Obviously, channels 1 and 2 are dominated
by the heartbeat of the mother, and channel 5 by that of the
child. Channels 3, 4, and 6 still contain heartbeat compo-
nents (of mother and child, respectively), but look much

FIG. 7. Unsmoothed estimates ofÎsfd for two randomly mixed
uniform distributions, corrupted with isotropic Gaussian measure-
ment noises with different signal-to-noise ratiosSNR=`, 13, 7, 4, 1
(from top to bottom), plotted againstf.

FIG. 8. Averaged Amari index against the signal-to-noise ratio.
The condition number of the mixing matrices is 6. The upper curve
(in the SNR range from 7 to 3) is for standard MILCA, the lower
for n-MILCA.

FIG. 9. MILCA output: components after minimizing
IsX1¯X8d for the heartbeat example of Sec. III E.
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more noisy. Channels 7 and 8 seem to be dominated by
noise, but with rather different spectral compositions.

In order to verify this also formally(which would be es-
sential in any automatic real-time implementation), we first
show in Fig. 10(upper panel) the pairwise MIs. We see that
most MIs are indeed small, except the one between the first
two components. This indicates again that the first two com-
ponents belong to the same source, namely the heart of the
mother. But some of the other MIs seem to be definitely
nonzero, even if they are small. This indicates that the de-
composition is not perfect, as is also seen by closer inspec-
tion of Fig. 9.

Finally, we show in the lower panel of Fig. 10 the vari-
abilities under remixing. They confirm our previous findings.
In contrast to the sine/cosine pair in test example(c), the first
two components have nonzeros, showing that the distribu-
tion in this subspace is not isotropic and that one can mini-
mize the interdependence in it by a suitably chosen demix-
ing. Apart from that, the biggest values ofs are for channels
1, 2, and 5, showing that these channels are most reliably and
uniquely reconstructed. They are just the channels dominated
most strongly by a heartbeat.

IV. CLUSTER ANALYSIS

We pointed out already that the usual assumption of inde-
pendent one-dimensional sources as in Eq.(15) is often un-
realistic. Take, e.g., the ECG discussed in the previous sub-
section, and assume that both hearts—the one of the mother
and the one of the fetus—are independent chaotic dynamical
systems. A chaotic system with continuous time must have at
least three excited degrees of freedom[48]. With any generic

placement of the electrodes, we should then expect to pick
up ù3 different components from each heart. These compo-
nents must be strongly dependent on each other, even after
having been whitened[49]. Thus each heart must contribute
to at least three output components inany linear ICA
scheme. For the mother heart we have indeed found two
components. The fact that we have not clearly identified
more dependent components in the output should be consid-
ered as a failure of the instantaneous linear algorithm and
will be dealt with more systematically in Sec. V.

In any case, in view of this we have to expect that outputs
in real-world applications are not independent but come in
connected clusters. Moreover, we should expect that even
within one cluster there are more or less strongly connected
substructures. We have already discussed in Sec. III C a
simple way to identify these clusters. In the present section,
we present a more systematic analysis.

Our strategy is to estimate a proximity matrix from the
MIs, and then to use a hierarchical clustering algorithm to
obtain a dendrogram. No thresholds are used in constructing
the dendrogram, i.e., it is constructed without making any
decision about which MILCA output channels are indepen-
dent or not. Only after its construction do we decide, usually
based on heuristic reasons and arguments of practicality and
usefulness, which channels are actually grouped together.
This is more convenient, usually, than the algorithms of
[3,4,50], where this decision stands at the starting point of
the algorithm or is an essential part of it.

A first technical problem concerns the choice of the prox-
imity matrix. One might be tempted to use MI directly. But
we want to include the possibility that some of the channels
to be grouped together are already multidimensional by
themselves. In this case, using MI would introduce a bias:
multivariate channels not only tend to carry more informa-
tion than univariate ones, they also will have larger MIs.
Therefore, we propose to use as a similarity measure[14]

Pij =
Îsŝi,ŝjd

dimsŝid + dimsŝjd
, s25d

where dimsxd is the dimension of the variablex, i.e., the
number of its components.

In most cluster algorithms, the proximity matrixP is used
only for the first step. In the subsequent steps, proximities for
clusters are derived from it in some recursive way[51]. In
the present paper, we propose to use “MI-based clustering”
(MIC) [14], which is based on the grouping property Eq.(9).
Thus, a cluster of output channels is just characterized by the
multivariate signal formed by the tuple of its individual
channels, and the proximity measure is still given precisely
by Eq. (25) at each level of the hierarchy.

In summary, our cluster algorithm is as follows. We start
with n (usually univariate) MILCA output channelsŝi, i
=1, . . . ,n, and we computePij according to Eq.(25). After
that, we enter the following recursion:(i) Find the pair with
minimum distance in the matrix, say clustersi and j ; (ii )
combine the clustersi and j to a new clustersi j d with mul-

tivariate dataŝi j , and attribute to it a heightÎsŝi , ŝjd in the
dendrogram, thereby the total number of clusters is reduced

FIG. 10. Upper panel:Î between all the pairwise combinations
of the signals shown in Fig. 9. Lower panel: Square roots of vari-

abilities si j of Î i j sfd. In both panels the values on the diagonal are
set to zero.
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by 1, n←n−1; (iii ) if the new value ofn is 1, then exit;
otherwise(iv) update the proximity matrixPij and go to(i).

The dendrogram obtained in this way for the ECG data of
Sec. III E is shown in Fig. 11. In this figure, two clusters are
clearly distinguishable, the mother cluster containing chan-
nels 1, 2, 3, 4, and 7, and the fetus cluster formed by chan-
nels 5 and 6. This agrees perfectly with the interpretation
given in Sec. III E. One can of course debate whether, e.g.,
channel 7 belongs to the mother cluster or not, but this can
be decided as it seems most convenient, and it will in general
have little effect on any conclusions. One way to make use of
such a clustering is in cleaning the data and separating the
individual sources. For that, one prunes everything except
the wanted cluster, and reconstructs the original channels by
applying the inverse of the matrixW. Results obtained in
this way will be shown in the next section, after having dis-
cussed how to take into account temporal structures.

V. USING TEMPORAL STRUCTURES

A. Instantaneous demixing that minimizes delayed mutual
informations

Until now we have not used any time structure in the
signals. In the following, we shall assume the signals to be
stationary with finite autocorrelation times. ICA algorithms
in the literature either use no time information at all(JADE
[24], FastICA[1], INFOMAX [52], …) or, if they do use it,
they use only second-order statistics(AMUSE [53], TDSEP
[25],…). The first group is not able to decompose two Gauss-
ian signals with different spectra, while the second group is
not able to separate two temporally white signals with differ-
ent amplitude distributions. Obviously, one has to make use
of time structureand higher-order statistics, to obtain opti-
mal results in general[2,54]. This is precisely what we will
do in this subsection.

Normally, the first step in nonlinear time-series analysis of
univariate signals is delay embedding[47]: One constructs a
formally m-variate signal, for anym.1, by simply forming
m-dimensional “delay vectors” with a suitably chosen delay
t,

xstd = fxst − td,xst − 2td, . . . ,xst − mtdgT. s26d

Thus one characterizes the “state” of a signal at timet by
giving not its value att itself, but atm previous times. This
makes sense of course only when there is any time structure
in the signal. Similarly, we can also embed multivariate sig-
nals. Forn measured channels, one obtains thereby ann
3m “delay matrix”

Xstd = fx1std, . . . ,xnstdg. s27d

To decompose an instantaneous linear mixture ofn sig-
nals with either non-Gaussian statistics or with nontrivial
time structure, we propose to simply minimize the MI,

Î„s1std, . . . ,snstd… = min. s28d

Notice that we have considered here the delay vectors as
joint entities, i.e., we do not include in Eq.(28) the MIs
between the different delays of the samexi. More explicitly
[55],

I„x1std, . . . ,xnstd… = I„x1st − td, . . . ,x1st − mtd,

x2st − td, . . . ,x2st − mtd, . . . ,

xnst − td, . . . ,xnst − mtd…

− o
i=1

n

I„xist − td, . . . ,xist − mtd…

= o
i=1

n

H„xistd… − H„x1std, . . . ,xnstd….

s29d

To minimize this, we proceed again as in Sec. III, i.e., we
decompose the rotation needed to minimize

Î(x1std , . . . ,xnstd) into rotations within each of thensn
−1d /2 coordinate planes. Each of the latter rotations still
involves rotations ofm delay coordinate pairs, but this can be
further decomposed intom rotations where only one delay
coordinate pair is rotated. We thereby obtain

I„. . .,xi8std, . . . ,x j8std, . . .… − I„. . .,xistd, . . . ,x jstd, . . .…

= I„xi8std,x j8std… − I„xistd,x jstd…

= I„xist − td, . . . ,xist − mtd…

+ I„xjst − td, . . . ,xjst − mtd…

− I„xi8st − td, . . . ,xi8st − mtd…

− I„xj8st − td, . . . ,xj8st − mtd…

+ mfI„xi8std,xj8std… − I„xistd,xjstd…g, s30d

where we have used in the last term the fact that
I(xi8std ,xj8std) is independent oft due to stationarity. Ifm=2,
this is again a sum of pairwise MIs. Ifm.2, we have to
estimatem-dimensional MIs directly.

To illustrate this on a simple example, let us assume two
channels wherex1std andx2std are instantaneous mixtures of
two Gaussian signals with the same amplitude distribution
but with different spectra:x1 is white (iid), while x2 is red

FIG. 11. Dendrogram for Fig. 9. The height of each clustersi j d
corresponds toÎsXi ,Xjd sk=6d.
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and was obtained by filtering with a Butterworth filter of
order 6 and with cutoff frequency 0.3. For simplicity, we
assume the mixing to be a pure rotation. Then a scatter plot
of the vectors(x1std ,x2std) is completely featureless, see Fig.
12 (upper), and will not allow a unique decomposition. But
using delay embedding withm=2 is sufficient to obtain the
original sources(Fig. 12, lower panel) (see also Fig. 13).

Similarly good results were obtained with the less trivial
examples of previous sections. In particular, we tested the
algorithm on test problem(b) of Sec. III B (Fig. 14). The
performance of MILCA is improved substantially, even with
m=2. The delayed MI[Eq. (28)] which make use of the time
structure serves as a better performance value[Fig. 14
(right)]. Now JADE and FastICA are also heavily punished
for not separating one audio signal from Gaussian noise(as
one can see, the MI for TDSEP is nearly unchanged because
the time correlation in the output is minimal).

B. Demixing with delays

The most general linear demixing ansatz for a stationary
system assumes superpositions of the observed signalswith
delays. Using up tom delayst, 2t , . . . ,mt, we thus make the
ansatz(see, e.g., Ref.[1], Chap. 19)

ŝistd = o
j=1

N

o
k=1

m

wij
kxjst − ktd = o

j=1

N

wi jx jstd, s31d

wherex jstd is a delay vector as defined in Eq.(26) and

wi j = fwij
1
¯ wij

k g. s32d

Since we have now linear superpositions ofn3m measure-
mentsxjst−ktd on the right-hand side, we can also determine
the same number ofŝistd for each value oft, i.e., the indexi
in Eq. (31) runs from 1 tonm.

This ansatz is obviously more appropriate than instanta-
neous mixing, if the signalsxistd are themselves superposi-
tions of delayed sources. If they involve a finite number of
delays,

xistd = o
j

o
k=1

m8

aij
ksjst − ktd, s33d

Eq. (31) with finite m would not give theexactdemixing,
since inverting Eq.(33) would require an infinite number of
delay terms. Also, Eq.(31) in general does not correspond to
the inverse of Eq.(33), because its solutions are in general
not components of any delay vectors. But it should definitely
be a better ansatz than the instantaneous Eq.(15).

Apart from that, we would anyhow not expect Eq.(33) to
be the correct model in most applications. The main reason
why we believe that Eq.(31) is useful in many applications
is that it can cope much better with the situation discussed at
the beginning of Sec. IV. Assume for the moment that there
is a single source. Different sensors(as, e.g., different ECG
contacts) typically see different projections of this source,
and the signalsxistd can therefore be considered as different

FIG. 12. Upper panel: scatter plot of the two Gaussian sources
with different spectra. Lower panel: Output of the modified MILCA
algorithm(t=1 andm=2), where the white Gaussian is on top and
the red Gaussian is on the bottom.

FIG. 13. Change ofÎ under rotation, for the Gaussian model
shown in Fig. 12. The nearly horizontal curve shows the behavior
without, the sinusoidal one the result with using delay embedding.
Here the actual mixing angle is 0.

FIG. 14. Test problem(B) of Sec. III consisting of five input
channels(compare with Fig. 2). Algorithm “MILCA*” now refers
to the minimization of Eq.(28). The gray bars on the right panel
show the full MI given in Eq.(28). The embedding parameters are
m=2, t=1.
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coordinates describing its dynamics. As pointed out by Tak-
ens [47], delayed values of one single signal can also be
considered as different coordinates. Our demixing ansatz ba-
sically reflects the hope that suitable superpositions of de-
layed values ofxi, say, can mimic any other signalxj.

To illustrate this, we consider again the above ECG re-
cording. We assume for the moment that only the two chan-
nels with the most pronounced fetus heartbeat are available
and try to decompose them into mother and fetus heartbeat.
These two channels are shown in Fig. 15(top). They are still
dominated by the mother heartbeat. But theR peak of the
mother has a very different shape in both channels: In the
lower trace it is mainly positive, while it has both positive
and negative components in the upper. It is therefore clear
that there cannot exist an instantaneous superposition to
which the mother’s heartbeat does not contribute. Instanta-
neous ICAmust fail for this case, as is indeed seen in the
lower two traces of Fig. 15.

In order to obtain the least dependent components obtain-
able with Eq.(31), we minimize again the MI. But now, in
contrast to the previous subsection, the output variablesistd
is not delay coordinates of any sources, and therefore we
must minimize the full MI betweenall sistd,

Î„s1std, . . . ,snmstd… = min. s34d

The minimization is done again, as in all previous cases, by
performing successive transformations in 2D subspaces and
by using Eq.(10). In terms of the actual algorithm, the only
difference from the previous subsection is that we now make
rotations inall subspaces.

In our application to the fetal ECG, we use embedding
dimension m=3 and the smallest possible delay,t
=1/500 s−1. Results for the two channels shown in Fig. 15
are now shown in Fig. 16. The separation is now improved.
Although we still have one output channel where mother and
fetus are strongly mixed(channel no. 4), channel no. 6 is
now practically a pure fetal heartbeat.

Finally, we applied this method to all eight channels of the
ECG. Using againm=3 gives altogether 24 output channels.
They are shown in Fig. 17, and we can clearly see which
ones are dominated by the mother heartbeat, which by the
fetus, and which by noise. In order to do this more objec-
tively, we again apply the cluster algorithm of Sec. IV, with
the result shown in Fig. 18. There, one can clearly see two

big clusters corresponding to the mother and to the fetus.
There are also some small clusters which should be consid-
ered as noise.

For any two clusters (tuples) X=X1¯Xp, and Y
=Y1¯Yq, one hasIsX1, . . . ,Yqdù IsXd+ IsYd. This guaran-
tees, if the MI is estimated correctly, that the tree is drawn
properly, i.e., each parent node is above the two daughter
nods. The two slight glitches[when clusters 1–14 and 15–18
join, and when 21 and 22 are joined with 23] result from
small errors in estimating MI. They do not affect our conclu-
sions.

In Fig. 19, we show the matrices of pairwise MIs(upper
panel) and of pairwise variabilities(lower). They are as ex-
pected, and they show much more pronounced structures
than the matrices without delay embedding(Fig. 10). For the
MIs, one can see a clear block structure, i.e., the mother and
fetus components are now indeed more independent, as sug-

FIG. 15. Upper panel: Two channels of the ECG of a pregnant
woman. Lower panel: MILCA output from these two channels.

FIG. 16. MILCA output from the delay embedded two-channel
ECG with embedding dimensionm=3.

FIG. 17. MILCA output from the embedded eight-channel ECG
sk=100,m=3d.
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gested also from the traces themselves. From the right panel,
we see that the main mother channels(1–4) and the fetus
channels(7 and 8) are very stable. The rest is mostly noise,
and is not stable as indicated by the very small variabilities.

The final result of MILCA is obtained by pruning every-
thing not belonging to the cluster of interest,

ŝistd → PCŝistd ; Hŝistd i P clusterC

0 otherwise
J s35d

and performing the back-transformation. At this stage, there
arises the problem that the reconstructed signals

x̂j ,kst;Cd = W s j ,kd,i
−1 PCŝistd, W i,s j ,kd = wij

k s36d

are in general not delay vectors, i.e.,

x̂j ,k+1st;Cd Þ x̂j ,kst − t;Cd. s37d

In view of this, one has to make some heuristic decision
what to use as a cleaned signal. We use simple averages,

x̂jst;Cd =
1

m
o
k=1

m

x̂j ,kst + kt;Cd. s38d

We do not show all eight full traces for the mother and fetus,
because this would not be very informative: the results are
too clean to be judged on this scale. Instead, we show in Fig.
20 blow-ups of one of the original traces and the contribu-
tions to it from the mother and from the fetus. The separation
is practically perfect.

Before leaving this section, we should point out that one
can, in principle, also construct algorithms in between those
of the last two subsections. In Sec. V A, we had used delays
to minimize the lagged MI, but we had not used the delays in
the demixing. In the present subsection, we have used the
same delays both for minimizing MI and for demixing. A
generalization consists in usingm delays in the demixing,
but minimizing the MI with additionalm8 delays. Thus we
make the same demixing ansatz Eq.(31) as above, but we
minimize

Î„s1std, . . . ,snmstd… = min, s39d

where we have used the definition ofI(s1std , . . .) given in Eq.
(30), and ŝistd=fŝist−td , ŝist−2td , . . . ,ŝist−m8tdgT. Up to
now, we have not yet applied this to any problem.

VI. DISCUSSION

There is by now a huge literature on independent compo-
nent analysis. Therefore, most of our treatment is related in
some form to previous work. One of our basic premises was
that we did not care so much about speed, but we wanted as
precise a dependency measure as possible. Our claim that
this is provided in principle by MI is of course not new. But

FIG. 18. Dendrogram for Fig. 17. Heights of each cluster cor-
respond toIsXi ,Xjd of the clusteri j sk=3d.

FIG. 19. Upper panel: Pairwise MIs between the estimated com-
ponents shown in Fig. 17. Lower panel: Square roots of variabilities
si j of IsXi ,Xjd (with k=6). Elements on the diagonal have been set
to zero.

FIG. 20. Short segment from the original ECG(a), of the mother
and fetus contributions estimated without delay embedding(b,c),
and of the two contributions estimated with delay embedding(d,e).
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we believe that our estimator viak-nearest-neighbor statistics
is new and provides the most precise mutual information
estimate. It is closely related to similar estimators fordiffer-
ential entropieswhich had been used in[11,12], and the
quality of our results in the most simple 2D blind source
separation problem is very similar to that in[12]. The main
virtue of our MI estimator, compared to all previous MI es-
timators, is the numerical fact that it becomes unbiased when
the two distributions are independent.

While using differential entropies instead of MI would
give the same quality and somewhat simpler codes for the
basic blind separation problem, using MI has other advan-
tages: with it we can estimate the residual dependencies be-
tween the output components. Our use of this knowledge for
estimating the output uniqueness and robustness, by measur-
ing how the dependencies change under remixing, seems to
be new. Previous authors used for this problem resamplings
and/or noise addition[6–8].

In addition to this, we used the MIs between the outputs
to cluster them, and we then used this clustering to obtain the
contributions of the individual(multidimensional) sources to
the measured signals. The observation that “independent”
component analysis will in general, when applied to real
world data, not give independent components is not new ei-
ther [3–5]. We stress it by calling our approach a “least de-
pendent” component analysis. Our detailed implementation
of this idea seems to be new, not the least because our clus-
tering algorithm is novel and uses a specific property of MI
not shared by other contrast functions.

Although the extension of our algorithm to data with time
structure discussed in Sec. V A seems straightforward, this
strategy of combining in the contrast function deviations
from Gaussianity both at equal times and at nonequal times
has been considered in very few papers only[2,54]. We be-
lieve the present paper is the first which uses directly MI for
combining these two aspects. In Sec. V it was shown that
this can substantially improve the separation, e.g., of audio
signals.

Both the ansatz of Sec. V A and the method of demixing
with delays in Sec. V B are entirely based on MI, and use
essentially the same algorithm. Therefore, also the generali-
zation mentioned at the end of Sec. V B uses essentially the
same basic algorithm. This last generalization was never
considered before, but demixing with delays is of course a
very widely treated concept(see, e.g.,[1]). It is usually
called “convolutive mixing.” In our presentation, we stressed
several features which are typically overlooked. One is that
the “convolutive” demixing ansatz Eq.(31) is in general,
when the sourcessistd are not strictly independent,not
equivalent to a convolutivemixing ansatz, because the
sources then will not be components of delay vectors. This is
also the reason why we avoided the term “convolutive mix-
ing.”

Just as ICA may be considered as a generalization of prin-
cipal component analysis(PCA) to non-Gaussian contrast
functions, mixing with delays is a generalization of multi-
variate singular source analysis(SSA) [56,57] to include
non-Gaussianity. Univariate SSA, see, e.g.,[49,58], is often
considered as an alternative to Fourier decomposition and
has found many applications, while multivariate SSA was

mainly used in geophysics. Indeed, we consider blind source
separation algorithms based on temporal second-order statis-
tics (AMUSE, TDSEP) as more closely related to multivari-
ate SSA than to other ICA methods based on nonlinear con-
trast functions.

While we discussed also a number of other applications
and test models, our main test problem was the ECG of a
pregnant woman, and the task was mainly to extract a clean
fetal ECG. We have chosen this partly because this ECG was
already used in previous ICA analyses[5,6,44]. We believe
that our method clearly outperformed these and gives nearly
perfect results, although we should admit that the signals to
start with were already exceptionally clean. It would be of
interest to see how our method performs on more noisy(and
thus more typical) ECGs. Obtaining fetal ECGs should be of
considerable clinical interest, although it is not practiced at
present, mainly because of the formidable difficulties to ex-
tract them with previous methods. In this respect, we should
mention the seminal work of[59,60], where fetal ECGs were
extracted even fromunivariatesignals using locally nonlin-
ear methods. It would be interesting to see how our method
compares with such a nonlinear method when the latter is
used for multivariate signals.

Throughout the paper, we usedtotal MI as a contrast
function. One mighta priori think that the sum of all pair-
wise MIs would be easier to estimate, and could be as useful
as the total MI. Neither is true. One reason for the efficiency
of our algorithm is thatchangesof the total MI under linear
remixings can be estimated by computing only pairwise MIs
(except for the method of Sec. V A with embedding dimen-
sion m.2). Thus one needs to compute the full high-
dimensional MI only once. For all changes during the mini-
mization, computing pairwise MIs is sufficient. But this does
not mean that total MI is essentially a sum of pairwise MIs.
We showed in the Appendix that this can be very wrong. And
we found in more realistic applications that the sum over all
pairwise MIs sometimesincreaseswhen we minimize total
MI. Therefore, we consider the sum over all pairwise MIs as
a very bad contrast function.

This is somewhat surprising if one considers ICA as a
generalization of PCA. PCA can be viewed as minimaliza-
tion of the sum over all squared pairwise covariances. But
we believe that this close relation between ICA and PCA is
somewhat misleading anyhow. It is usually based on this
analogy that the data are firstprewhitened, before the ICA
analysis proper is made, which is then restricted to pure ro-
tations. We showed by means of a counterexample that this
can lead to a solution which doesnot have minimal MI. This
was a rather artificial example, and the problem might not be
serious in practice(all our results were obtained, for simplic-
ity, with prewhitening). But one should keep it in mind in
future applications.

Finally, we should point out that Eqs.(9) and (10) hold
for the exact MI, but are only approximately true for our
estimators. Therefore, working directly on higher-
dimensional MIs, without breaking their changes down to 2D
contributions, can give slightly different results. We found no
big systematic trends, although we expect in general that
estimates using the smallest dimensions are most reliable.
The reason is that they are based on smaller distances for
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fixed k, or use largerk when using the same distances. The
first reduces systematic errors, the second statistical ones.
The decrease in CPU time when using Eq.(10) to decrease
the effective dimensionality is a further important point.

VII. CONCLUSION

In the first part of the paper, we discussed the classical
linear instantaneous ICA model and introduced a new algo-
rithm which shows better results than conventional ICA al-
gorithms. Our algorithm should be particularly useful for real
world data, since it works with actual dependencies between
reconstructed sources(as measured by mutual information)
and thus easily allows us to study the question of how inde-
pendent and unique are the found components.

In the following sections, we discussed the case where
outputs can be grouped together for a meaningful interpreta-
tion. We again saw that MI has some properties which makes
it the ideal contrast function, also for this purpose.

Finally, when we included time-domain structures, we
could again use the same estimates of MI, with basically the
same algorithms. This—and the excellent results when ap-
plied to a fetal electrocardiogram—suggests that our method
of basing independent component analysis systematically on
highly precise estimates of MI is very promising. It is true
that our method is slower than existing algorithms like
FastICA or JADE, but we believe that the improved results
justify this effort in many situations, in particular in view of
the ever-increasing power of digital computers.

The software implementation of the MILCA algorithm is
freely available online[61].
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APPENDIX

In this appendix, we give two counterexamples showing
somewhat counterintuitive features of the MI. In the first
example, we have two continuous variables, and the joint
density is constant in an L-shaped domain,

D = hf0,lxg 3 f0,eg ø f0,eg 3 f0,lygj. sA1d

It is zero outsideD. It is easily seen thatIsX,Yd→h in the
limit e→0, with h=p log p+s1−pdlogs1−pd and with p
= lx/ slx+ lyd. In this limit, the marginal distributions are su-
perpositions of ad peak atx or y equal to zero, and a uni-
form distribution on [0,1]. The components have relative
weightslx: ly. The only information abouty learned by fixing
x is on which arm the pairsx,yd is located, and for thish bits
are sufficient.

On the other hand, any linear transformation applied to
the sx,yd plane would give an L-shaped figure with at least
one oblique arm. For such a distribution, knowingx would
specify y with an accuracy,e, and thusIsX,Yd,−log e
→` for e→0. But the covariance betweenX and Y is not
zero, hence the minimal MI is reached(for smalle) when the
correlation coefficientr is nonzero. A more detailed analysis
shows thatIsX,Yd of the distribution rotated by an anglef is
not symmetric underf→−f, if lxÞ ly.

The second example is one of three random variablesX,
Y, and Z which are pairwise strictly independent, but glo-
bally dependent. For simplicity, the example uses discrete
and indeed binary variables. We have thus eight probabilities
psx,y,zd for each variable being either 0 or 1, and we chose
them as ps0,0,0d=ps1,1,0d=ps0,1,1d=ps1,0,1d=1/8+e
and ps0,0,1d=ps0,1,0d=ps1,0,0d=ps1,1,1d=1/8−«. For
this choice, all pairwise probabilities are 1/4, butIsX,Y,Zd
Þ0.
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